If it's not what You are looking for type in the equation solver your own equation and let us solve it.
750=2t+4.9t^2
We move all terms to the left:
750-(2t+4.9t^2)=0
We get rid of parentheses
-4.9t^2-2t+750=0
a = -4.9; b = -2; c = +750;
Δ = b2-4ac
Δ = -22-4·(-4.9)·750
Δ = 14704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14704}=\sqrt{16*919}=\sqrt{16}*\sqrt{919}=4\sqrt{919}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-4\sqrt{919}}{2*-4.9}=\frac{2-4\sqrt{919}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+4\sqrt{919}}{2*-4.9}=\frac{2+4\sqrt{919}}{-9.8} $
| (7+w)-(w+7;w=-4 | | 8+3z=14 | | 10(1+3b)=-20 | | 10v−3v−1=20 | | -2x-4/5+8/5=3(x-1) | | x=0.35x+20 | | 2y(2+4)=9y | | 9x-11=2(16x-12) | | 129=c+2 | | 14x-6=8x | | 5x-2x=256 | | 2(3x-1)=4(2x-5) | | f/48=24 | | -4(-3y+6)-y=2(y-7)-4 | | 45+160=x | | 32/x+3=36/x+6 | | -7x—2x+-18=7 | | 19y+24=-18+9y | | c+35/10=7 | | 9(6a+2)=-26 | | 6=b-37/7 | | -4u+7=-10u+7 | | k/2.5=0.8 | | 3(4x-2)=2(5x+6) | | Y=y-35 | | 3.20=z+2.64 | | x/10+x/4=800 | | 32x+3=36x+6 | | x/10+4x=800 | | 100=10(q+1) | | 8x=0.3224 | | -5.7z=110.8 |